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separates the region of the primary convective heat transfer (Pr > Pr,), from the region of the 

primary conductive heat transfer (Prc Pr,). 
Indeed, if the thermal flux at infinity is zero, then 7,EO, and in the case of Pr> 

Pr, the principal term, as R-+00, represents the particular solution of the inhomogeneous 
equation (2): 2 (5) R-', and the temperature at infinity will be determined by the dissipative 

heating and not by the heat source on the sphere R =R,,. If on the other hand Pr < Pr,, 

then the dipole term of the solution of the homogeneous Eq.(2) will become principal as R+oo, 
i.e. in this case the influence of the boundary condition at R =R, will extend to infinity, 
the latter effect being characteristic for conductive heat conduction. 

If the heat flux at infinity is not zero, then it hardly makes sense to distinguish 

between those two modes of heat transfer. It should be noted that the possibility of separating 

the heat transfer modes depends essentially on the manner in which the heat source, which in 
the present case is the viscous dissipation of kinetic energy of the fluid, is distributed 
throughout the volume. 
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ON THE NON-LINEAR MAXWELL-TYPE DEFINING EQUATIONS FOR DESCRIBING 
THE MOTIONS OF POLYMER LIQUIDS* 

A.N. PROKUNIN 

The problem of using non-linear Maxwell equations containing elastic 
deformation as the intermediate parameter, to approximate experimental 
data on the motion of polymer liquids under arbitrary elastic deformations, 
is studied. The data used concern the simple shear, uniaxial tension and 
pure shear. The form of the dependence of the free eneryg and rate of 
irreversible deformation on the elastic deformation is expressed in 
specific terms. It is assumed that in the course of the deformation, 
directional phenomena such as crystallization and mechanical destruction 
play a negligible part. Maxwellian models where the total deformation is 
separated into the elastic and the irreversible part, were constructed 
in /l-12/**, initially in the region of small elastic deformations /l-3/. 
(**See also: Kuvshinskii E.V. Study of the flows of macropolymer solutions 
(Mechanics of Elastic and Viscoelastic Media). Dis. na soiskanie uch. st. 
dokt.fiz.matem.nauk. Leningrad, Leningr.fiz.-tkhn.in-t,l950; Leonov A-1. 
On the description of rheological behaviour of viscoelastic media under 
large elastic deformations. Preprint In-ta problem mekhan. Akad. Nauk 
SSSR, Moscow, No.34, 1973; Leonov A.I. Non-equilibrium thermodynamics 
and rheology of viscoelastic polymer media. Preprint lektsii prochitannoi 
v Mezhdunarodnoi shkole "Problemy teplo- 
slozhnykh sredakh "Minsk, 1975). 

i massoperenosa v reologicheski 

8,10/ 
The present paper deals with the basic propositions developed-in /7, 
for Maxwell media. Basically, we use the approach of /7/ in which 

the general form of Maxwell's equations is obtained within the framework 
of quasilinear non-equilibrium thermodynamics under the assumption that 
the locally equilibrium state of the medium is non-linearly elastic. The 
drawbacks apparent in the description of the experimental facts, based on 
specific equations, 
proposed. 

are noted and a simple method for overcoming them is 

*Prikl.Hatem.Mekhan.,48,6,957-965,1984 
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1. Separation of the deformation into its reversible (elastic) and 
irreversible parts e We assume /7,11/ that every deformed state of the viscoelastic 
medium x = @I described by the Maxwell model can be put in simultaneous 1:1 correspondence 
with the initial undeformed 8 = {ti) state and the unloaded state n = (r]i) in which a small 
element of the medium arrives when it deforms elastically after the removal of stress. Such 
an asstiption makes it possible /12/+ to introduce, together with the total deformation 
gradient tensor (*See SlSO: Entov V.M. Dynamics of viscous and elastic fluid films. Preprint 
In-ta problem mekhan. nkad. Nauk SSSR, No.130, Moscow, 1979.) CD (&I @et@, the tensors of 
reversible @# (dx =@*+dq) and irreversible ap (dg = aS,.dg) deformation. Differentiating these 
expressions with respect to time t with the Lagrangian coordinates 5' fixed, we find that 
the velocity gradient fa dot denotes a time derivative) 

v,v =cD'.cp'=10,‘.@~- + QD,.r.D,'.9,-1.@,-1 

We define the deformation rate and vorticity tensors as follows: 

@'.OD+=e+o, @e'UQIL-l=e,+o, 

~=.4=*.a>,-1-~,-1=e,+o P 

and we have for them 

e=e,+e,, ~=%-t% i1.Q 

The total deformation, e.g. the Finger measure c = O.@r is connected with the tensors 
e, 0, by the following relation (see e.g. /7,11/J: 

c'-o.e+e.o-e*e-c-e=0 0.2) 

and we have exactly the same relation for the elastic components of the kinematic tensors 

c~~-_41..cafc,.0~-e,.cd-ec,.e,=0, c,=*,~@~~ 0.3) 

The derivation of (1.2) and (1.3) is identical. 
In relation (1.3) of /7,8,10/ it was assumed that 

al*=@ (1.4) 

Some arguments supporting this asgumption were given in /12/ (one of them is given below). 
Using relations Cl.11 and (1.41, we shall rewrite relation 11.3) in its final form (the 

index s denotes the symmetrization operation) 
. 

c, -o.c,~e,.0-2(e~c,)'3_2(e,~c,)S=O (1.5) 

Relation (1.5) connects the elastic deformation tensors c, and irreversible deformation 
tensor ep with the kinematic tensors eand o. 

In t&e region of small elastic deformations E, = 6 +A (6 is the unit tensor and 11 A 11 ci: 

*, the brackets denote the norm of the tensor), relation (1.5) transforms to the well-known 
form: 

dA/dt=2(e-e,) (1.6) 

Since polymer liquids are usually assumed incompressible, it follows that /7/ 

detc,=%, tre=tre,=O 0.7) 

2. Detemining the stress in term of elastic deformation, ID the relevant 
publications itis assumed that the free energy of the medium f is a function of the elastic 

deformationtensor c, and the temperature T. For a Maxwell medium the stress tensor has the 
form,according to /7,8,10/, analogous to the stress tensor for an elastic isotropic medium 

/11,13/ (P is the density) 

a = 2pC,+t+f/ae, ((It j = ZpC,, i&afldCe, hj ) (2.1) 

In using the companent-wise notation we have assumed here and below that the Eulerian 
coordinate system is rectangular and Cartesian. 

If the medium is incompressible, we can introduce the elastic potential w = PO/ (P = PO = 
const). In this case formula (2.1) can be written in the form 

a=-- pi3 f 2 g e, - 2 g- c,_’ (3.2) 

where the multiplier p is found from the boundary conditions, and 1, and I, are invariants 
appearing in the Hamilton-Cayley e+atiOn 

I, = tr c,, I, = tr q-l (I, = tlet e,. G 1) (2.3) 

Here by an isotropic elastic medium we mean a medium of the crosslinked rubber type, and 

this is reflected in the specific form of the elastic potential W (see below). 



In the region of small elastic deformations (2.2) becomes Booke's Law (p is the modulus 

of elasticity) 
a=-pS+Z~A (2.4) 

3, Defining the irreversible rate of deformation in terms of elastic 
deformation, To close the system of rheological equations <1.5), (1.7) and (2.2), we must 

specify the form of the isotropic function % W Its isotropy follows from the expression 

describing the dissipation of a weakly non-equilibrium system /7/. In this case, using the 
conservation laws and the Gibbs expression end assuming that the isotropically elastic state 
represents the local equilibrium (basic) state we can write, under isothermal conditions, the 
following expression for the dissipative function in the form 

D=a:e-ppofJ~=a:e,=u*:~~O (u*:e,,=tro*~e,f- (34 

where eP satisfies (1.5), as was shown in [7];u* is the stress deviator. The final expres- 
sion for D was also obtained in /8/ by a somewhat different method. 

From the assumption of a linear relationship between the forces and energy fluxes (e,,ll= 
Aijrrn (cB, 2') a~,,,*) and from (2.2) , there follows 171 the isotropy of the xelation ep A)- 
Taking into account the condition of incompressibility, we can write the latter relation, for 
the general case, in the form 

where the expressions for II and I, are given by (2.3)" 
In the region of linear viscoefasticity (c,-+&) we have 

e, = A/@@), 6 = r$(2p) (3.3) 

where q is the viscosity of the system and 0 is the relaxation time. 
We also note that the antisymmetric tensor 9 can probably be regarded /12/, by 

analogy with e,, as an isotropic function of e,, and this leads to the relation m,ssO (see 
(1.1),(1.4)). 

Further specification of bl (11,11) and b. (Zl,I,) in (3-2) is carried out by making 
assumptions on the basis of arguments of simplicity and correspondence with experimental 
data. 

In /7,10/ it was assumed that, as in the region of linear viscoelasticity, the following 
relation (see (2.3) and (3.3)) holds in the non-linear domain of medium deformation: 

In this case 

where $ can depend, in general , on the invariants of the tensor e,. A formula similar to 
13.4) was also given in /8/. 

We note that the system of rheological equations fiS), (1.7), (2.2), f3.4) obtained character- 
izesthedeformation of metals. In the case of polymers in the viscofluid state it fails to 
describe a number of simplest experimental facts, e.g. the behaviour of normal stresses in 
the case of a simple stationary shear (see below). 

In /7/, the anisotropy of the viscous properties was taken into account, unlike 13.41, 
and it was assumed that 

We note that in the case of polymers W&I,) is a non-symmetric function of Iz and I, 

and Eq.(3.4) fails to hold for the case (3.5). 
Use of the system of rheological equations (1.5), (1.7), (2.2), (3.2), (3.9, obtained in /7/ made 

it possible to describe, for the first time, the basic set of non-linear effects arising in 
the course of the deformation of polymer liquids, The solution of this system for q==wns~ 
gave, in the case of classical potential of the lattice theoxy of high elasticity /14/ 

w = a (1, - 3) (3.8) 
a good quantitative description (two Maxwell elements connected in parallel were used in the 
quantitative description) of experimental data concerning the elastic deformations under 
simple shear and elongation /15,16/*. It was found however, that the description(+see also: 
Prokunin A-N. Non-linear elastic effects during the stretching of polymer liquids. Experiment 
and Theory. Preprint In-ta problem mekhan. Akad. Nauk SSSR, No.4, MOSCOW, 1978.) of the stress- 
es in the cases studied was unsatisfactory at high rates of deformation. 

An attempt was made in /9/ to correct the discrepancies shown by introducing a potential 
of a more general type /3.7/ (see below), since the domain of applicability of the potential 
(3.6) is restricted with respect to the deformations /14/. Although the use of the potential 
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/17/ iUQroved the agreement between the theoretical and experimental relations conngcting 
the tangential stresses and shear deformation rate , it aid not minimize the discrepancies 
arising during stretching. 

Below we propose to remove the discrepancies shown, by putting 

bl = b, = const (3.7) 

with T ==COIU~. Then the expression for es (3.2) will, according to (3.3), take the form (6 is 
the relaxation time) 

Q = (4e)-1 I+, - w16) - (CC’ - w,s) (3.8) 

Equations (1.5), (i.?), (Y&Z), (3.8) with 8 independent of e,, formaclosedsystemofrheological 
equations, and their advantage is illustrated by the following arguments: 

in the case of the elastic potential of the lattice theory of high elasticity (3.6) they 
are identical with the system of equations /7/ (see (1.5), (1.7),(2.2),(&Z), (3.5)), whose solution 
in this case yields a good quantitative description of a large number of experiments on shear 
and elongation /X,16/: 

the rheological equations become simpler compared with those given in /7/, and this 
enables us, in particular, to use easily various elastic potentials in the study of the flows 
with prescribed kinematics: 

when the potential used in (1.5), (1.7), (2.2),(3.8) is of a more general form than (3.6) 1'171 
(see below), it becomes -possible to correct the discrepancies in the solutions of the system 
noted above in the stress experiment, without changing the theoretical description of the 
development of the motions and behaviour of elastic deformations with time. 

We also note that fox every concrete potential W it must be confirmed that the second 
law of thermodynamics (3.1) is satisfied. 

4. Specification of the form of the elastic potential. It was shown 
experimentally /18/ that the following two-parameter potential holds for crosslinked rubbers up 
up to at least approximately tenfold extension: 

w = (4p/n7 tr (cy - 6) (4.1) 

where p is the modulus of elasticity and n>O is a numerical constant. When n = 2, the 
potential (4.1) coincides with the classical potential (3.6). 

In the case of the elastic potential f4.1) the expression for the stress has, according 
to (2.21, the form 

ET = --p6 $-&L/n) c:/* (4.2) 

where the spherical tensor appears as a result of taking into account the condition of 
incompressibility. 

It can be shown that in the case of rheological equations for the fluid in question and 
potential f4.1), the second law of thermodynamics (the positiveness of the dissipative function 

D (%) when e, f 6 holds). 
The tensors c:‘~ and es (cc) can be reduced, in this case, by the same coordinate trans- 

formation, to the diagonal form 

::le = diag (~$5 ~~~~,c;,"~,%;,'~, (4.3) 7 . 
e* = d&T &. 1. QE, a*- &I, 1 f *p, a)) 

where c.,s > 0 and c+.>O are the principal independent values of the tensor c,, taking the 

conditions of incompressibility (1.7) into account. The expressions connecting the quantities 

eP,l* cP,* and Q,,, te,*, have, according to (3.81, the form 

@P. 1 = (izec,, lCI,*)-'(Ce, 1 - 1) [c,, &, * + %, 2 (5. 1 + 1) + 11 (4.4) 

up,* = (=8c,Ic,, ,)-'(S,* - 1) (p;* 1%. 2 f 25, 1 (5.: + 1) -I- '1 

From (4.4) it follows that a,,x> o, c,,,)o for c,,&)1, +,*>2 and bp,~<Orep,?<O for %,I< 

i. c*,.<i. 

Ll I G,l 
Fig.1 
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When the stress is given by (4.2), the expression for the dissipative function can be 
written Ln terms of the principal axes in the form 

D = (ern)trc:"*e, = (Ws) It*,&;+ s,*@~-- (Q.,l + ~P.t)C~~~~C;,?$ (4.5) 

It is clear that for n>O, B (aa) z 6 in the domains of values ~~,~>i, ~~,%&i and 

cr,19*,Ce,zfi. 
For the final proof of the positiveness of D for any values of %. 1 and %z we shall 

show that D takes all its possible values at ce,1% 1, ~,,~gi (region 3 in Fig.1) and "e,r ,, f* 

CL.;> f (region 4). 
Let us now consider the system of variables IX? 1, 

II = CC,% + =&B+ (c, xc* 2)-X% (4.6) . r II =c;"r + q, -4 ce xc* 2 , . *. 

Since the values of I, and I, are symmetrical with respect to %,1 and %,' therefore 

in what follows it is sufficient to consider the behaviour of D (I,,I,) in the region c&l<*, 

%.27 1. The region is divided by the hyperbola 

%,l<i*c,*,zG;, 

cc $= c;:~ (see Fig.1, curvs KM) into tworegions, 
(region 1) and ~~,r<i, ce,,gc,71, (region 2) 0 It can be confirmed (see (4.6)) 

that for any point of the region I ce,* = t, e_= t" (n>L,O<f<i) we can find a point of the 
region 3 cc, I - t, cc,% = P-1 for which I, and 1, will be the same. Similarly we can find for any 
point of the region Zc,,=t,c,,,=fn(O<ngi,O<t<1), a point of the region Lce,l=t-n,c,z= 
t7H Thus all possible values of the function D(I,,f,) = DL(~L.l,~e,,) are realized in the ' 
regions 3 and 4, and D(e,)>O when % * 6. 

5, Comparison of the theoretical and experimental results. Next we shall 
use the proposed version to study the Maxwell model of simple and pure shears, and of u&axial 
elongation. The results of the corresponding experiments with a solution of butyl rubber in 
transformer oil and with a polyisobutylene melt can be found in e.g. /15,16/*. The first 
(* see also: Prokunin A.N. Non-linear elastic effects during the stretching of polymerliquids. 
Experiment and Theory. Preprint In-ta problem mekhan. Akad. Nauk SSSR, No.4, Moscow, 1978.) 
preliminary experiments on pure shear were carried out for polyisobutylene in /18/. 

Simple shear ususally takes place between two plates one of which is fixed and the other 
of which moves parallel to the first in direction 1, The axis 2 is perpendicular to the 
plates, In this case the kinematic matrices have the form 

010 
-100 (5.V 

000 

where y'>O is the rate of de ing, in general, on time. 
The matrix e, is reduced by an oxthogonal transformation to its diagonal form 

where the condition of incompressibility (1.7) was taken into account when the 
expression for c,* in f5.2), 

writing 
Substituting the matrices (5.1) into (1.5),(3.8) taking (5.2) 

and the conditions of incompressibility of the medium into account, we obtain 

-1 
c;,,, -t (4e)-+,---C;lf IC, -~1 + (c, + et 

. 
)~as2icpl=2~ cum 

4 12 -t (de)-1 tee - c3 (ce + c,l) sin 29 fc y'c,. Dp 
2c c. 11 = c, + c,' + (c, - c,-1) co9 q 
2c c, ** = e, + c*-1 - (c. - c~-l)cos rp 
2c,, la = (c, - c,-l) sin 2cp 

(5.3) 

System (5.3) yields the relations 
Remembering that @' = q.~:““.q-~, 

G 0) and rp (t). 

(4.2) in terms of c, and q. 
W@ can obtain expressions for the stress tensorcomponents 

The following quantities are usually measured in experiments with polymer liquids: 

0, = 011 - a,, = 4 (pin) (P - c;"~e)coS 29 

a2 = a22 - usa = 2 (p/n) Icy + cy* - 2 - (cy - cr"'2)eos 2cp] 
(54 
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ala 
w2 = 2 (pin) (ce - cc +") sin 2g, 

In the case of stationary- flow (5.3) with y’= const), we have 

c -c-l 
co9 2Cp = -L, 2 

CC i c;’ 
sincp=p, 

c.+ $1 
(c, + c;‘) (Ce - c,_‘) = 48y’ 

and (5.4) become 

aI9 = 4 (p/n) (c:‘” - tin’*) (c. + Q-*)-~ 

0, = (T,z (c, - &-I) 

a2 = 2 (p/n) E’* + cT”‘* - 2 - a,n/(4y)] 

(5.6) 

%lure 2 shows the experimental quantitative dependence of al,,al and aI on Y'. We 
also note that the dependence of the effective viscosity a&' on y' is a monotonically 
decreasing function and condition I a, /<ul holds for the normal stresses. 

To make a comparison with experiment, we shall consider the asymptotic dependence of 
019 us and aI, on the dimensionless parameter I? = y-0 

r < I: am = qy + 0 (r*), a1 = 4p8y2 + 0 (r*) (5.7) 

a, iii -ZptPp(1 - n/4) + 0 (I?), q = 2pe 

rsi: a,, z 2 (ph) (4rp-q (I~ = 4 (p/n) m/4 (5.8) 

0, = 4 (p/n) H - (4r)+ - (4f)n-Yi 

To match this with the experiment, we put 

4h~2 (5.9) 

When n<2, the relationship q,(r) passes through a maximum. The descending branch 
is in this case unstable. 

When thedirection of motion of the plate is reversed, the rate of deformation changes its 
sign. In this case from (5,5) it follows that c, (-y').= c,-'(y'). Then the stress components 

and a, remain 
Zen r(o 

unchanged and the tangential component ul, changes its sign (see (5.4)) 

r and q, in 
the asymptotic formulas for (-I?)< 1 are analogous to (5.7). When (-r)>l, 
(5.8) should be replaced by (-r) and (-an). 

Homogeneous uniaxial elongation 
c 

This usually occurs when stretching a cylinder of 
polymer liquid. This type of deforma ion is described, in a fixed Cartesian coordinate 
system, by the matrices (x>O is the rate of deformation) 

e = x diag {I, --'I,, -1/a}, (o e 0, c, = diag {h", h-', h-l} (5.10) 

In the expressions for the tensors eand c, the condition of incompressibility of the 
medium (1.7) was taken into account. Substituting the matrices (5.10) into the equations 

(1.5)~ (3.8~ (4.2). we obtain the following system of defining equations for the elongation: 

(5.11) 

where u are tensile stresses. In deriving the second formula of (5.11) it was assumed that 
the stress vanishes at the free surface of the stretched cylinder. 

The experiments * carried out on a plyisobutylene melt have shown that in the case (*see 
also: Prokunin A.N. Non-linear elastic effects during the stretching of polymer liquids. 
Experiment and Theory. Preprint In-ta problem mekhan.. Akad. Nauk SSSR, No.4, MOSCOW, 1978.) 
of a stationary flow (x = con&) the stress a and viscosity six increase monotonically as x 
increases. To compare these experimental data, we shall consider the asymptotic behaviour of 
a relative to the magnitude of the dimensionless parameter I' = ~6 

r < 1: a = 3qx + 0 (I?); r > 1: ax 4 (pln)(6r)n'z (5.12) 

Formulas (5.12) agree with the experimental data shown when n > 2. We note than when 

n=2 the viscosity increases from 311 to 6n. When n> 2 the viscosity increases 
without limit, and this leads to a more accurate description of the experiment than when 
n = 2. 

Pure shear occurs e.g. when a film is stretched in direction 1, without deformation in 
direction 2 perpendicular to 1. The ends of the film are fixed in this direction, and the 
surfaces perpendicular to direction 3 are free. In this case we have (x > 0 is the rate of 

deformation) 
e = x diag {I, 0, -I}, 0 s 0, c, = tliag (C,, 1, C,-'} (5.13) 



Subsituting the matrices (5.13) into (1.5), (3.8), (4.2), we obtain a system of rheological 
equations describing pure shear 

In deriving the 
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a 11 = 4 (p/n)(@- cy), a,, = 4 (p/n)(l - c?) 

expressions for 011 and usz in (5.14), the fact that usI = 0 at the 
free surface of the medium was taken into account. 

Preliminary experiments carried out for x = const on polyisobutyline in /lS/ have shown 
that a,, and azE increase as x increases when the flow is stationary. The effective viscosity 

%& is approximately constant within the interval ix in question, and the ratio %& 
decreases rapidly as x increases. 

In the case of a stationary flow (X = const in every experiment), Eqs.cS.14) show that 
the relation connecting the elastic deformation c, with the dimensionless parameter r = xe, 

has the form 

From (5,14) and (5,151 it follows that 

r e I: u,l = 4?% + 0 (rs), u,, = ~VX + 0 (r*) (5.16) 

rai:~,, =: 4 (pin)(4rp/t, uzz = 4 (phm - (m-n/21 s(5.17) 

Thus the theory agrees with experiment when n > 2 /18/. 
Let us consider the case when x = const(O(r<O) in the kinetic matrices (5.10) and (5.13). 

This corresponds to compression of a cylindrical sample or of a film with the edges clamped 
along the axis 1. when jFl(ci ,. the asymptotic formulas (5.12) and (5.16) remain the same 
as in the case when l>I">O. when Irl-m. the elastic deformation h-0 in the problems 
in question. In the case of uniaxial compression we have for lF19i 

0 z. -4(pln)(-tJr)n'~ 

Since O<n<4, it follows that for uniaxial stationary compression the effective 
viscosity diminishes beginning from the value 3n (see (5.12)). Nhen a film with clamped 
edges is deiorrmed we have, for F<O and irIp%, 

gl, = ot8 = -4 (pin) (-4r)n'* 

We also note that the experimental realization of these two types of deformation, and 
especially of the film, is very difficult since the form of the samples is not stable and the 
inhomogeneities present in the clamped areas affect the deformation. 

In the light of what was said above , we can conclude hat a class of polymers exists 
whose non-linear behaviourina viscoliquid state is described, over a wide class of 
deformations, by a Maxwell model with the relaxation time independent of the elastic 
deformation. 

Experiments /19/ carried out on a melt of crystallisable polymer (low density, polyethyl- 
ene) show that its behaviour under tension differs essentially from that predicted by the 
model with the relaxation time independent of elastic deformations. For example, a retardation 
of the flow was observed in the polymer. During the deformation stage the polymerlostfluidity, 
but later the development of the flow followed the behaviour of the plastic media. 

To describe the loss of fluidity in the polymer the relaxation time 8 was specified in 
/7/ as an exponentially increasing function of the elastic potential. A qualitativedescription 
of the flow retardation can be found in [ZO, 211. We note that in /21/a tensor was introduced, 
taking into account the orientation of the segments forming the macromolecules, in addition 
to the elastic deformation tensor, to characterize the strain orientation of the macranol- 
ecules. A scalar parameter characterizing the concentration of the oriented polymer /22/ may 
also be found useful in describing the effect of flow retardation. 

1. 

2. 

3. 

4. 

5. 
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